login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001173
Half the number of binary relations on n unlabeled points.
(Formerly M4010 N1662)
6
1, 5, 52, 1522, 145984, 48464496, 56141454464, 229148550030864, 3333310786076963968, 174695272746749919580928, 33301710992539090379269318144, 23278728241293494533015563325552128, 60084295633556503802059558812644803074048, 576025077880237078776946730871618386151571214336
OFFSET
1,2
REFERENCES
M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
FORMULA
a(n) = A000595(n)/2. - Sean A. Irvine, Mar 16 2012
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2 GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/(2 n!)];
Array[a, 12] (* Jean-François Alcover, Aug 01 2019, after Andrew Howroyd in A000595 *)
PROG
(Python)
from itertools import product
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A001173(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in product(p.keys(), repeat=2)), prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n)))>>1 # Chai Wah Wu, Jul 02 2024
CROSSREFS
Sequence in context: A322195 A216464 A279644 * A277202 A223248 A208303
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 18 2000
a(13)-a(14) (based on A000595) from Pontus von Brömssen, Aug 04 2022
STATUS
approved