login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000956
A sequence satisfying (a(2n+1) + 1)^3 = Sum_{k=1..2n+1} a(k)^3.
(Formerly M2099 N0831)
1
2, 17, 40, 5126, 211888, 134691268742, 28539643139633848, 2443533691612948322627563638932102, 69737579558305654640845711279133047105190578109248
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. A. Klarner, Sequences of k-th powers with k-th power partial sums, Math. mag., 37 (1964), 165-167.
D. A. Klarner, Sequences of k-th powers with k-th power partial sums, Math. Mag., 37 (1964), 165-167. Annotated scanned copy.
FORMULA
a(1)=2, a(2)=17, a(3)=40, a(2n+2) = 3*a(2n+1)^2 + 8*a(2n+1) + 6, a(2n+3) = 3*a(2n+1)^3 + 12*a(2n+1)^2 + 17*a(2n+1) + 8. - Sean A. Irvine, Sep 16 2011
MATHEMATICA
a[1] = 2; a[2] = 17; a[3] = 40;
a[n_] := a[n] = If[EvenQ[n], 3*a[n-1]^2 + 8*a[n-1] + 6, 3*a[n-2]^3 + 12*a[n-2]^2 + 17*a[n-2] + 8];
a /@ Range[14] (* Jean-François Alcover, Oct 22 2019 *)
CROSSREFS
Sequence in context: A069042 A121923 A212276 * A031906 A045390 A289135
KEYWORD
nonn
EXTENSIONS
One more term from Sean A. Irvine, Sep 15 2011
STATUS
approved