|
|
A289135
|
|
Prime numbers p such that 3*p - 2 is the square of a prime number.
|
|
2
|
|
|
2, 17, 41, 97, 281, 457, 617, 937, 1777, 2081, 2297, 3137, 6257, 12161, 18097, 21001, 23057, 24121, 24481, 25577, 26321, 42961, 47881, 50441, 62497, 70841, 76481, 90481, 97561, 110977, 120401, 132721, 139537, 152777, 159161, 172321, 182041
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = (A109953(n)^2 + 2) / 3.
|
|
MATHEMATICA
|
Select[Prime@ Range@ 20000, PrimeQ@ Sqrt[3 # - 2] &] (* Michael De Vlieger, Jun 26 2017 *)
|
|
PROG
|
(PARI) forprime(n=2, 10000, if(isprimepower(3*n-2)==2, print1(n", ")))
(PARI) list(lim)=my(v=List([2]), p); forprime(q=7, sqrtint(lim\1*3-2), if(isprime(p=(q^2+2)/3), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Jul 16 2017
|
|
CROSSREFS
|
Cf. A109953.
Sequence in context: A000956 A031906 A045390 * A072582 A186687 A256145
Adjacent sequences: A289132 A289133 A289134 * A289136 A289137 A289138
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Dimitris Valianatos, Jun 25 2017
|
|
STATUS
|
approved
|
|
|
|