Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2099 N0831 #32 Oct 22 2019 16:26:48
%S 2,17,40,5126,211888,134691268742,28539643139633848,
%T 2443533691612948322627563638932102,
%U 69737579558305654640845711279133047105190578109248
%N A sequence satisfying (a(2n+1) + 1)^3 = Sum_{k=1..2n+1} a(k)^3.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H John Cerkan, <a href="/A000956/b000956.txt">Table of n, a(n) for n = 1..14</a>
%H D. A. Klarner, <a href="http://www.jstor.org/stable/2689160">Sequences of k-th powers with k-th power partial sums</a>, Math. mag., 37 (1964), 165-167.
%H D. A. Klarner, <a href="/A000955/a000955.pdf">Sequences of k-th powers with k-th power partial sums</a>, Math. Mag., 37 (1964), 165-167. Annotated scanned copy.
%F a(1)=2, a(2)=17, a(3)=40, a(2n+2) = 3*a(2n+1)^2 + 8*a(2n+1) + 6, a(2n+3) = 3*a(2n+1)^3 + 12*a(2n+1)^2 + 17*a(2n+1) + 8. - _Sean A. Irvine_, Sep 16 2011
%t a[1] = 2; a[2] = 17; a[3] = 40;
%t a[n_] := a[n] = If[EvenQ[n], 3*a[n-1]^2 + 8*a[n-1] + 6, 3*a[n-2]^3 + 12*a[n-2]^2 + 17*a[n-2] + 8];
%t a /@ Range[14] (* _Jean-François Alcover_, Oct 22 2019 *)
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E One more term from _Sean A. Irvine_, Sep 15 2011