login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000763
Number of interval orders constructed from n intervals of generic lengths.
1
1, 3, 19, 195, 2831, 53703, 1264467, 35661979, 1173865927, 44218244943, 1877050837355, 88693432799667, 4618194424504623, 262771389992099719, 16223185411792992403, 1080238361814167993739, 77171781603974127429527
OFFSET
1,2
LINKS
Vincenzo Librandi, Jean-François Alcover and Bruno Berselli, Table of n, a(n) for n = 1..100 (up to n = 21 from Vincenzo Librandi, up to n = 40 from Jean-François Alcover)
FORMULA
E.g.f. E(x) satisfies E'/E = y^2, where y=1+x+5*x^2/2+... is defined by y*(2-exp(x*y))=1.
E.g.f.: exp(int(RootOf(2*_Z-_Z*exp(x*_Z)-1)^2, x)) [in Maple notation].
a(n) ~ c * n^(n-2) / (r^n * exp(n)), where r = 2*(LambertW(2*exp(1))-1)^2 / LambertW(2*exp(1)) = 0.204378273928311464700648197201... and c = 1/((1 - 1/LambertW(2*exp(1))) * exp(1/2)*sqrt(2*(1 + 1/LambertW(2*exp(1))))) = 1.196923669815370203369255598062684... . - Vaclav Kotesovec, Mar 22 2016
MAPLE
seq(n! * coeff(series(exp(int(RootOf(2*_Z-_Z*exp(x*_Z)-1)^2, x)), x, n+1), x, n), n = 1..20); # Vaclav Kotesovec, Mar 21 2016
MATHEMATICA
A000763[max_] := ( e[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 1; c[1] = 1; y[x_] := Sum[d[k]*x^k, {k, 0, max}]; d[0] = 1; d[1] = 1; cc = CoefficientList[ Series[ e'[x]/e[x] - y[x]^2, {x, 0, max}], x]; dd = CoefficientList[ Series[ y[x]*(2 - Exp[x*y[x]]) - 1, {x, 0, max}], x]; eqdd = Thread[dd == 0]; soldd = Solve[ Thread[dd == 0] ]; eqcc = Thread[(cc /. soldd[[1]]) == 0]; solcc = Solve[ Most[eqcc] ] ; solcc /. Rule -> Set; soldd /. Rule -> Set; Table[c[k], {k, 1, max}] *Range[max]! ); Do[A000763[max], {max, 5, 40, 5}]; A000763[40] (* Jean-François Alcover, Jul 23 2013 *)
PROG
(PARI) seq(n)={my(p=serreverse(2*x - x*exp(x + O(x^n)))/x); Vec(serlaplace(exp( intformal(p^2) )))} \\ Andrew Howroyd, Jun 05 2021
CROSSREFS
Cf. A052894.
Sequence in context: A053554 A048172 A079145 * A001832 A195511 A123681
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, Nov 04 2001
STATUS
approved