OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..365
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} k! * [x^k] 1/(1-x)^n.
a(n) ~ 2^(2*n - 1/2) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
a(n) = (Pochhammer(n, n + 1)*subfactorial(-2*n - 1) + (-1)^n*subfactorial(-n))/(n+1) where subfactorial(n) = exp(-1)*Gamma(n + 1, -1). - Peter Luschny, Oct 18 2017
MAPLE
subfactorial := n -> simplify(exp(-1)*GAMMA(n+1, -1)):
a := n -> (pochhammer(n, n+1)*subfactorial(-2*n-1)+(-1)^n*subfactorial(-n))/(n+1):
seq(simplify(evalc(a(n))), n=0..17); # Peter Luschny, Oct 18 2017
MATHEMATICA
Table[1/(n+1) Sum[Binomial[n+k-1, k]k!, {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Dec 14 2012 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n+k-1, k)*k!)/(n+1)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 05 2006
EXTENSIONS
Definition corrected by Harvey P. Dale, Dec 14 2012
STATUS
approved