login
A123681
a(n) = (1/(n+1)) * Sum_{k=0..n} C(n+k-1,k)*k! = A123680(n)/(n+1).
2
1, 1, 3, 19, 197, 2841, 52327, 1171871, 30899529, 937529317, 32173291931, 1232093935227, 52088478142861, 2409578607253169, 121067200114483407, 6565538372492694871, 382234458749760846737, 23777755561583494209981
OFFSET
0,3
LINKS
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} k! * [x^k] 1/(1-x)^n.
a(n) ~ 2^(2*n - 1/2) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
a(n) = (Pochhammer(n, n + 1)*subfactorial(-2*n - 1) + (-1)^n*subfactorial(-n))/(n+1) where subfactorial(n) = exp(-1)*Gamma(n + 1, -1). - Peter Luschny, Oct 18 2017
MAPLE
subfactorial := n -> simplify(exp(-1)*GAMMA(n+1, -1)):
a := n -> (pochhammer(n, n+1)*subfactorial(-2*n-1)+(-1)^n*subfactorial(-n))/(n+1):
seq(simplify(evalc(a(n))), n=0..17); # Peter Luschny, Oct 18 2017
MATHEMATICA
Table[1/(n+1) Sum[Binomial[n+k-1, k]k!, {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Dec 14 2012 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n+k-1, k)*k!)/(n+1)
CROSSREFS
Cf. A123680.
Sequence in context: A000763 A001832 A195511 * A007151 A269787 A303927
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 05 2006
EXTENSIONS
Definition corrected by Harvey P. Dale, Dec 14 2012
STATUS
approved