login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of interval orders constructed from n intervals of generic lengths.
1

%I #55 Jun 05 2021 16:36:48

%S 1,3,19,195,2831,53703,1264467,35661979,1173865927,44218244943,

%T 1877050837355,88693432799667,4618194424504623,262771389992099719,

%U 16223185411792992403,1080238361814167993739,77171781603974127429527

%N Number of interval orders constructed from n intervals of generic lengths.

%H Vincenzo Librandi, Jean-François Alcover and Bruno Berselli, <a href="/A000763/b000763.txt">Table of n, a(n) for n = 1..100</a> (up to n = 21 from _Vincenzo Librandi_, up to n = 40 from _Jean-François Alcover_)

%F E.g.f. E(x) satisfies E'/E = y^2, where y=1+x+5*x^2/2+... is defined by y*(2-exp(x*y))=1.

%F E.g.f.: exp(int(RootOf(2*_Z-_Z*exp(x*_Z)-1)^2, x)) [in Maple notation].

%F a(n) ~ c * n^(n-2) / (r^n * exp(n)), where r = 2*(LambertW(2*exp(1))-1)^2 / LambertW(2*exp(1)) = 0.204378273928311464700648197201... and c = 1/((1 - 1/LambertW(2*exp(1))) * exp(1/2)*sqrt(2*(1 + 1/LambertW(2*exp(1))))) = 1.196923669815370203369255598062684... . - _Vaclav Kotesovec_, Mar 22 2016

%p seq(n! * coeff(series(exp(int(RootOf(2*_Z-_Z*exp(x*_Z)-1)^2, x)), x, n+1), x, n), n = 1..20); # _Vaclav Kotesovec_, Mar 21 2016

%t A000763[max_] := ( e[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 1; c[1] = 1; y[x_] := Sum[d[k]*x^k, {k, 0, max}]; d[0] = 1; d[1] = 1; cc = CoefficientList[ Series[ e'[x]/e[x] - y[x]^2, {x, 0, max}], x]; dd = CoefficientList[ Series[ y[x]*(2 - Exp[x*y[x]]) - 1, {x, 0, max}], x]; eqdd = Thread[dd == 0]; soldd = Solve[ Thread[dd == 0] ]; eqcc = Thread[(cc /. soldd[[1]]) == 0]; solcc = Solve[ Most[eqcc] ] ; solcc /. Rule -> Set; soldd /. Rule -> Set; Table[c[k], {k, 1, max}] *Range[max]! ); Do[A000763[max], {max, 5, 40, 5}]; A000763[40] (* _Jean-François Alcover_, Jul 23 2013 *)

%o (PARI) seq(n)={my(p=serreverse(2*x - x*exp(x + O(x^n)))/x); Vec(serlaplace(exp( intformal(p^2) )))} \\ _Andrew Howroyd_, Jun 05 2021

%Y Cf. A052894.

%K nonn,nice,easy

%O 1,2

%A _Richard Stanley_

%E More terms from _Vladeta Jovovic_, Nov 04 2001