login
A000597
Central factorial numbers.
(Formerly M5255 N2287)
5
36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400, 58856655, 115842675, 217378200, 391367064, 679524340, 1142659012, 1867463260, 2975110060, 4631998657, 7063027565, 10567817084, 15540347900, 22492529150, 32082258390, 45146587200
OFFSET
4,1
COMMENTS
a(n) is the sum of all products of three distinct squares of positive integers up to n, i.e., the sum of all products of three distinct elements from the set of squares {1^2, ..., (n-1)^2}. - Roudy El Haddad, Feb 17 2022
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233. (See Example 5.2 and Theorem 5.1)
Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
O.g.f.: x^4 * (x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36) / (1-x)^10.
a(n) = s(n,n-3)^2-2*s(n,n-4)*s(n,n-2)+2*s(n,n-5)*s(n,n-1)+2*s(n,n-6), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
From Roudy El Haddad, Feb 17 2022: (Start)
a(n) = Sum_{0 < i < j < k < n} (i*j*k)^2.
a(n) = (n - 1)*(n - 2)*(n - 3)*n*(2*n-1)*(2*n - 3)*(2*n - 5)*(35*n^2 + 21*n + 4)/45360.
a(n) = (1/(9!*2))*((2*n)!/(2*n-7)!)*(35*n^2 + 21*n + 4).
a(n) = binomial(2*n,7)*(35*n^2 + 21*n + 4)/144. (End)
MAPLE
1/(-1+z)^10*(z^5+75*z^4+603*z^3+1065*z^2+460*z+36);
seq(stirling1(n, n-3)^2-2*stirling1(n, n-4)*stirling1(n, n-2)+2*stirling1(n, n-5)*stirling1(n, n-1)+2*stirling1(n, n-6), n=0..30); # Mircea Merca, Apr 03 2012
MATHEMATICA
CoefficientList[Series[(x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36)/(1-x)^10, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 23 2015 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400}, 40] (* Vincenzo Librandi, Aug 07 2017 *)
PROG
(PARI) {a(n) = (n-1)*(n-2)*(n-3)*(n)*(2*n-1)*(2*n-3)*(2*n-5)*(35*n^2+21*n+4)/45360}; \\ Roudy El Haddad, Feb 17 2022
CROSSREFS
Column 3 of triangle A008955.
Cf. A000290 (squares), A000330 (sum of squares), A000596 (for two squares).
Cf. A001303 (for power 1).
Sequence in context: A028222 A028216 A028221 * A028214 A028197 A028209
KEYWORD
nonn,easy
STATUS
approved