login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central factorial numbers.
(Formerly M5255 N2287)
5

%I M5255 N2287 #105 Jul 11 2023 12:21:43

%S 36,820,7645,44473,191620,669188,1999370,5293970,12728936,28285400,

%T 58856655,115842675,217378200,391367064,679524340,1142659012,

%U 1867463260,2975110060,4631998657,7063027565,10567817084,15540347900,22492529150,32082258390,45146587200

%N Central factorial numbers.

%C a(n) is the sum of all products of three distinct squares of positive integers up to n, i.e., the sum of all products of three distinct elements from the set of squares {1^2, ..., (n-1)^2}. - _Roudy El Haddad_, Feb 17 2022

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A000597/b000597.txt">Table of n, a(n) for n = 4..1000</a>

%H Roudy El Haddad, <a href="https://arxiv.org/abs/2102.00821">Multiple Sums and Partition Identities</a>, arXiv:2102.00821 [math.CO], 2021.

%H Roudy El Haddad, <a href="https://doi.org/10.7546/nntdm.2022.28.2.200-233">A generalization of multiple zeta value. Part 2: Multiple sums</a>. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233. (See Example 5.2 and Theorem 5.1)

%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Merca2/merca7.html">A Special Case of the Generalized Girard-Waring Formula</a>, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

%F O.g.f.: x^4 * (x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36) / (1-x)^10.

%F a(n) = s(n,n-3)^2-2*s(n,n-4)*s(n,n-2)+2*s(n,n-5)*s(n,n-1)+2*s(n,n-6), where s(n,k) are Stirling numbers of the first kind, A048994. - _Mircea Merca_, Apr 03 2012

%F From _Roudy El Haddad_, Feb 17 2022: (Start)

%F a(n) = Sum_{0 < i < j < k < n} (i*j*k)^2.

%F a(n) = (n - 1)*(n - 2)*(n - 3)*n*(2*n-1)*(2*n - 3)*(2*n - 5)*(35*n^2 + 21*n + 4)/45360.

%F a(n) = (1/(9!*2))*((2*n)!/(2*n-7)!)*(35*n^2 + 21*n + 4).

%F a(n) = binomial(2*n,7)*(35*n^2 + 21*n + 4)/144. (End)

%p 1/(-1+z)^10*(z^5+75*z^4+603*z^3+1065*z^2+460*z+36);

%p seq(stirling1(n,n-3)^2-2*stirling1(n,n-4)*stirling1(n,n-2)+2*stirling1(n,n-5)*stirling1(n,n-1)+2*stirling1(n,n-6),n=0..30); # _Mircea Merca_, Apr 03 2012

%t CoefficientList[Series[(x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36)/(1-x)^10, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 23 2015 *)

%t LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400}, 40] (* _Vincenzo Librandi_, Aug 07 2017 *)

%o (PARI) {a(n) = (n-1)*(n-2)*(n-3)*(n)*(2*n-1)*(2*n-3)*(2*n-5)*(35*n^2+21*n+4)/45360}; \\ _Roudy El Haddad_, Feb 17 2022

%Y Column 3 of triangle A008955.

%Y Cf. A000290 (squares), A000330 (sum of squares), A000596 (for two squares).

%Y Cf. A001303 (for power 1).

%K nonn,easy

%O 4,1

%A _N. J. A. Sloane_