login
A028209
Expansion of 1/((1-6x)(1-7x)(1-11x)(1-12x)).
0
1, 36, 823, 15282, 251881, 3847032, 55777051, 779149134, 10588135261, 140901434388, 1844713666159, 23841089487306, 304926682591441, 3866889746187504, 48692419436767747, 609526612369569798
OFFSET
0,2
FORMULA
a(n) = 23*a(n-1) - 132*a(n-2) + 7^(n+1) - 6^(n+1), n >= 2. - Vincenzo Librandi, Mar 13 2011
a(n) = -6^(n+2)/5 - 11^(n+3)/20 + 2*12^(n+2)/5 + 7^(n+3)/20. - R. J. Mathar, Mar 18 2011
a(n) = 36*a(n-1) - 473*a(n-2) + 2682*a(n-3) - 5544*a(n-4); a(0)=1, a(1)=36, a(2)=823, a(3)=15282. - Harvey P. Dale, Apr 09 2015
MATHEMATICA
CoefficientList[Series[1/((1-6x)(1-7x)(1-11x)(1-12x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{36, -473, 2682, -5544}, {1, 36, 823, 15282}, 30] (* Harvey P. Dale, Apr 09 2015 *)
CROSSREFS
Sequence in context: A000597 A028214 A028197 * A028195 A114238 A028163
KEYWORD
nonn
STATUS
approved