login
Expansion of 1/((1-6x)(1-7x)(1-11x)(1-12x)).
0

%I #15 Aug 31 2018 19:28:30

%S 1,36,823,15282,251881,3847032,55777051,779149134,10588135261,

%T 140901434388,1844713666159,23841089487306,304926682591441,

%U 3866889746187504,48692419436767747,609526612369569798

%N Expansion of 1/((1-6x)(1-7x)(1-11x)(1-12x)).

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (36,-473,2682,-5544)

%F a(n) = 23*a(n-1) - 132*a(n-2) + 7^(n+1) - 6^(n+1), n >= 2. - _Vincenzo Librandi_, Mar 13 2011

%F a(n) = -6^(n+2)/5 - 11^(n+3)/20 + 2*12^(n+2)/5 + 7^(n+3)/20. - _R. J. Mathar_, Mar 18 2011

%F a(n) = 36*a(n-1) - 473*a(n-2) + 2682*a(n-3) - 5544*a(n-4); a(0)=1, a(1)=36, a(2)=823, a(3)=15282. - _Harvey P. Dale_, Apr 09 2015

%t CoefficientList[Series[1/((1-6x)(1-7x)(1-11x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{36,-473,2682,-5544},{1,36,823,15282},30] (* _Harvey P. Dale_, Apr 09 2015 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_