login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000527 Series-parallel numbers.
(Formerly M5304 N2306)
0
52, 472, 3224, 18888, 101340, 511120, 2465904, 11496144, 52165892, 231557064, 1009247192, 4331502840, 18346242492, 76822836544, 318485778848, 1308750158016, 5335993098340, 21603437175288, 86912657626392, 347660876627944, 1383457374046444, 5479086968052912, 21604984733546336, 84850331177724944, 332001521469767940, 1294589169323791912, 5031934808360234760, 19500424806065865400, 75360646947991208396, 290478417300879735680, 1116919455364101145920, 4284817000807140094464, 16402243457215852326116, 62659647762404302956856, 238910441445219175239480 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=4..38.

FORMULA

G.f.: 4(13+14S+3S^2)(1+S)/(1-S)^7, where S = g.f. for A000084. - Sean A. Irvine, Nov 14 2010

MATHEMATICA

n = 35; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[4 (13 + 14 S + 3 S^2) (1 + S)/(1 - S)^7 + O[x]^n, x] (* Jean-Fran├žois Alcover, Feb 09 2016 *)

CROSSREFS

Sequence in context: A257940 A005946 A200549 * A294055 A285753 A100413

Adjacent sequences:  A000524 A000525 A000526 * A000528 A000529 A000530

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 30 19:43 EDT 2022. Contains 354945 sequences. (Running on oeis4.)