login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257940
y-values in the solutions to x^2 + x = 5*y^2 + y.
2
0, 1, 52, 357, 16776, 114985, 5401852, 37024845, 1739379600, 11921885137, 560074829380, 3838809989301, 180342355680792, 1236084894669817, 58069678454385676, 398015497273691805, 18698256119956506912, 128159754037234091425, 6020780400947540840020
OFFSET
1,3
COMMENTS
Also, numbers k such that 2*k^2 + k*(k+1)/2 is a triangular number. Example: 114985 is a term because 2*114985^2 + 114985*114986/2 = 257114*257115/2. - Bruno Berselli, Mar 02 2018
FORMULA
a(1) = 0, a(2) = 1, a(3) = 52, a(4) = 357, a(5) = 16776; for n > 5, a(n) = a(n-1) + 322*a(n-2) - 322*a(n-3) - a(n-4) + a(n-5).
a(n) = 322*a(n-2) - a(n-4) + 32.
a(n) = 72*A257939(n-2) + 161*a(n-2) + 52.
G.f.: x^2*(3*x^3+17*x^2-51*x-1) / ((x-1)*(x^2-18*x+1)*(x^2+18*x+1)). - Colin Barker, May 14 2015
MATHEMATICA
LinearRecurrence[{1, 322, -322, -1, 1}, {0, 1, 52, 357, 16776}, 30] (* Vincenzo Librandi, May 15 2015 *)
PROG
(Magma) I:=[0, 1, 52, 357, 16776]; [n le 5 select I[n] else Self(n-1)+322*Self(n-2)-322*Self(n-3)-Self(n-4)+Self(n-5): n in [1..19]];
(PARI) concat(0, Vec((3*x^3+17*x^2-51*x-1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^100))) \\ Colin Barker, May 14 2015
CROSSREFS
Cf. A257939.
Sequence in context: A262477 A264494 A232404 * A005946 A200549 A000527
KEYWORD
nonn,easy
AUTHOR
STATUS
approved