login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257940 y-values in the solutions to x^2 + x = 5*y^2 + y. 2
0, 1, 52, 357, 16776, 114985, 5401852, 37024845, 1739379600, 11921885137, 560074829380, 3838809989301, 180342355680792, 1236084894669817, 58069678454385676, 398015497273691805, 18698256119956506912, 128159754037234091425, 6020780400947540840020 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also, numbers k such that 2*k^2 + k*(k+1)/2 is a triangular number. Example: 114985 is a term because 2*114985^2 + 114985*114986/2 = 257114*257115/2. - Bruno Berselli, Mar 02 2018

LINKS

Colin Barker, Table of n, a(n) for n = 1..798

Index entries for linear recurrences with constant coefficients, signature (1,322,-322,-1,1).

FORMULA

a(1) = 0, a(2) = 1, a(3) = 52, a(4) = 357, a(5) = 16776; for n > 5, a(n) = a(n-1) + 322*a(n-2) - 322*a(n-3) - a(n-4) + a(n-5).

a(n) = 322*a(n-2) - a(n-4) + 32.

a(n) = 72*A257939(n-2) + 161*a(n-2) + 52.

G.f.: x^2*(3*x^3+17*x^2-51*x-1) / ((x-1)*(x^2-18*x+1)*(x^2+18*x+1)). - Colin Barker, May 14 2015

MATHEMATICA

LinearRecurrence[{1, 322, -322, -1, 1}, {0, 1, 52, 357, 16776}, 30] (* Vincenzo Librandi, May 15 2015 *)

PROG

(MAGMA) I:=[0, 1, 52, 357, 16776]; [n le 5 select I[n] else Self(n-1)+322*Self(n-2)-322*Self(n-3)-Self(n-4)+Self(n-5): n in [1..19]];

(PARI) concat(0, Vec((3*x^3+17*x^2-51*x-1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^100))) \\ Colin Barker, May 14 2015

CROSSREFS

Cf. A257939.

Sequence in context: A262477 A264494 A232404 * A005946 A200549 A000527

Adjacent sequences:  A257937 A257938 A257939 * A257941 A257942 A257943

KEYWORD

nonn,easy

AUTHOR

Arkadiusz Wesolowski, May 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 04:22 EDT 2021. Contains 347508 sequences. (Running on oeis4.)