login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000525
Number of partially labeled rooted trees with n nodes (4 of which are labeled).
(Formerly M5329 N2317)
3
64, 625, 4016, 21256, 100407, 439646, 1823298, 7258228, 27983518, 105146732, 386812476, 1398023732, 4977320988, 17492710572, 60790051789, 209179971147, 713533304668, 2415061934763, 8117293752058, 27111950991825, 90039381031273
OFFSET
4,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: A(x) = B(x)^4*(64-79*B(x)+36*B(x)^2-6*B(x)^3)/(1-B(x))^7, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4* (64-79*B(n-3)+ 36*B(n-3)^2- 6*B(n-3)^3)/ (1-B(n-3))^7, x=0, n+1), x, n): seq(a(n), n=4..24); # Alois P. Heinz, Aug 21 2008
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n + 1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-3]^4*(64 - 79*B[n-3] + 36*B[n-3]^2 - 6*B[n-3]^3)/ (1 - B[n-3])^7, {x, 0, n}]; Table[a[n], {n, 4, 24}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A008295.
Cf. A042977.
Sequence in context: A200788 A250355 A045789 * A067476 A179810 A303265
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Oct 19 2001
STATUS
approved