This site is supported by donations to The OEIS Foundation.
User:Jason Kimberley/E k-reg girth eq g index
From OeisWiki
girth | C | D | E |
Cge | Dge | Ege | |
= | Ceq | Deq | Eeq |
Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g
Δ | A026794 | A185130 | A185140 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Δ | Σ | g \ k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
A185643 | A198313 | 3 | A000004 | A000004 | A026796 | A185133 | A185143 | A185153 | A185163 | ||
A185644 | A198314 | 4 | A000004 | A000004 | A026797 | A185134 | A185144 | ||||
A185645 | A198315 | 5 | A000004 | A000004 | A026798 | A185135 | |||||
A185646 | A198316 | 6 | A000004 | A000004 | A026799 | A185136 | |||||
A198317 | 7 | A000004 | A000004 | A026800 | |||||||
A198318 | 8 | A000004 | A000004 | A026801 | |||||||
9 | A000004 | A000004 | A026802 |
Notice that each sequence above is not the Euler transformation of the corresponding sequence counting connected k-regular simple graphs with girth exactly g: a disconnected graph with girth exactly g need only have one component with girth exactly g; the other component(s) only need have girth at least g.