This site is supported by donations to The OEIS Foundation.

# User:Jason Kimberley/D k-reg girth eq g index

From OeisWiki

girth | C | D | E |

Cge | Dge | Ege | |

Ceq | Deq | Eeq |

## Index of sequences counting disconnected k-regular simple graphs with girth exactly g

A210710 | lost :-( | A185010 | A185020 | A185030 | A185040 | A185050 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|

\ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||

A210703 | A210713 | 3 | A000004 | A000004 | A210723 | A185033 | A185043 | A185053 | A185063 | ||

A210704 | A210714 | 4 | A000004 | A000004 | A185024 | A185034 | A185044 | ||||

A210705 | A210715 | 5 | A000004 | A000004 | A185025 | A185035 | |||||

A210706 | A210716 | 6 | A000004 | A000004 | A185026 | A185036 | |||||

A210717 | 7 | A000004 | A000004 | A185027 | A185037 | ||||||

A210718 | 8 | A000004 | A000004 | A185028 | |||||||

9 | A000004 | A000004 | A185029 |

Notice that each sequence above is not the disconnected Euler transformation of the corresponding sequence counting connected k-regular simple graphs with girth exactly g: a disconnected graph with girth exactly g need only have one component with girth exactly g; the other component(s) only need have girth at least g.