This site is supported by donations to The OEIS Foundation.
User:Enrique Pérez Herrero/Piltz
From OeisWiki
< User:Enrique Pérez Herrero(Redirected from User:Enrique Pérez Herrrero/Piltz)
Contents
PILTZ DIVISOR FUNCTIONS
Standard Piltz Functions
Formulas:
- 1)
- 2)
- 3) , being an squarefree number: A005117.
- 4)
- 5) , Sequence A097988
- 6) , where is A007947
- 7) , Sequence A076479
- 8)
- 9) , Sequence A082476
- 10) , Sequence A010553
- 11) , Sequence A074816
- 12)
- 13)
- 14) ,Sequence A000010
- 15) ,Sequence A000720
- 16) , Unitary divisor function: Sequence A034444
- 17) , where are the Jacobi Polynomials
- 18)
Standard Piltz Functions in OEIS
Function | Sequence Id | Function | Sequence Id |
A000012 | A111217 | ||
A000005 | A111218 | ||
A007425 | A111219 | ||
A007426 | A111220 | ||
A061200 | A111221 | ||
A034695 | A111306 |
Other Sequences in OEIS Related to Divisor Function
Function | Sequence Id |
A048691 | |
A048785 | |
A035116 | |
A010553 | |
A036450 | |
A036452 | |
A036453 | |
A077592 | |
A046798 | |
A062319 |
Frozen Piltz Functions
Formulas:
1)
2)
3) , being a squarefree number: A005117.
Function | Sequence Id |
A063524 | |
A008683 | |
A007427 | |
A007428 | |
A247343 | |
A341831 | |
A341832 | |
A341833 | |
A341834 | |
A341835 | |
A341836 |
Mathematica: Programming Piltz Functions
(* Draft for Mathematica Package *) tau[1,n_Integer]:=1; SetAttributes[tau, Listable]; tau[k_Integer,n_Integer]:=Plus@@(tau[k-1,Divisors[n]])/; k > 1; tau[k_Integer,n_Integer]:=Plus@@(tau[k+1,Divisors[n]]*MoebiusMu[n/Divisors[n]]); k<1; (* Standard Piltz Functions *) A000012[n_]:=tau[1,n]; A000005[n_]:=tau[2,n]; A007425[n_]:=tau[3,n]; A007426[n_]:=tau[4,n]; A061200[n_]:=tau[5,n]; A034695[n_]:=tau[6,n]; A111217[n_]:=tau[7,n]; A111218[n_]:=tau[8,n]; A111219[n_]:=tau[9,n]; A111220[n_]:=tau[10,n]; A111221[n_]:=tau[11,n]; A111306[n_]:=tau[12,n]; (* Frozen Piltz Functions *) A063524[n_]:=tau[0,n]; A008683[n_]:=tau[-1,n]; A007427[n_]:=tau[-2,n]; A007428[n_]:=tau[-3,n]; (*Other Sequences Related to Piltz Functions*) A010553[n_]:=Nest[A000005,n,2]; A036450[n_]:=Nest[A000005,n,3]; A048691[n_]:=tau[2,n^2]; A048785[n_]:=tau[2,n^3]; A035116[n_]:=tau[2,n]^2; A074816[n_]:=3^PrimeNu[n]; A082476[n_]:=5^PrimeNu[n]; (* Alternate code for A082476 A082476[n_]:=Abs[DivisorSum[n,MoebiusMu[#]*tau[3,#^2]&]]; *) A097988[n_]:=tau[3,n]^2; A046798[n_IntegerQ]:=DivisorSigma[0,1+2^n]; A062319[0]:=1; A062319[n_]:=tau[2,n^n]; (*Adding Help Information on Piltz Functions *) A000012::usage="A000012: The simplest sequence of positive numbers: the all 1's sequence."; A000005::usage="A000005: d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n."; A007425::usage="A007425: d_3(n), or tau_3(n), the number of ordered factorizations of n as n = rst."; A007426::usage="A007426: d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu."; A007427::usage="A007427: Moebius transform applied twice to sequence 1,0,0,0,...."; A007428::usage="A007428: Moebius transform applied thrice to sequence 1,0,0,0,...."; A008683::usage="A008683: Moebius (or Mobius) function mu(n)."; A010553::usage="A010553: tau(tau(n))."; A034695::usage="A034695: Dirichlet convolution of number-of-divisors function (A000005) with A007426."; A035116::usage="A035116: tau(n)^2, where tau(n) = A000005(n)."; A046798::usage="A046798: Number of divisors of 2^n+1."; A048691::usage="A048691: tau(n^2), where tau = A000005."; A048785::usage="A048785: tau(n^3), where tau = number of divisors (A000005)."; A061200::usage="A061200: tau_5(n) = number of ordered 5-factorizations of n."; A062319::usage="A062319: Number of divisors of n^n, or of A000312."; A063524::usage="A063524: Characteristic function of 1."; A074816::usage="A074816: a(n) = sum(d|n, tau(d)*mu(d)^2 )."; A082476::usage="A082476: a(n)=sum(d|n, mu(d)^2*tau(d)^2)."; A097988::usage="A097988: a(n)=Sum_(d dividing n){tau(d)}^3."; A036450::usage="A036450: tau(tau(tau(n)))."; A111217::usage="A111217: d_7(n), tau_7(n), number of ordered factorizations of n as n = rstuvwx (7-factorizations)."; A111218::usage="A111218: d_8(n), tau_8(n), number of ordered factorizations of n as n = rstuvwxy (8-factorizations)."; A111219::usage="A111219: d_9(n), tau_9(n), number of ordered factorizations of n as n = rstuvwxyz (9-factorizations)."; A111220::usage="A111220: d_10(n), tau_10(n), number of ordered factorizations of n as n = rstuvwxyza (10-factorizations)."; A111221::usage="A111221: d_11(n), tau_11(n), number of ordered factorizations of n as n = rstuvwxyzab (11-factorizations)."; A111306::usage="A111306: d_12(n), tau_12(n), number of ordered factorizations of n as n = rstuvwxyzabc (12-factorizations).";
PARI/GP: Programming Piltz Functions
A000005(n)=numdiv(n); A000012(n)=1; A010553(n)=numdiv(numdiv(n)); A035116(n)=numdiv(n)^2; \\Adding help addhelp(A000005,"A000005: d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n."); addhelp(A000012,"A000012: The simplest sequence of positive numbers: the all 1's sequence."); addhelp(A007425,"A007425: d_3(n), or tau_3(n), the number of ordered factorizations of n as n = rst."); addhelp(A007426,"A007426: d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu."); addhelp(A007427,"A007427: Moebius transform applied twice to sequence 1,0,0,0,...."); addhelp(A007428,"A007428: Moebius transform applied thrice to sequence 1,0,0,0,...."); addhelp(A008683,"A008683: Moebius (or Mobius) function mu(n)."); addhelp(A010553,"A010553: tau(tau(n))."); addhelp(A034695,"A034695: Dirichlet convolution of number-of-divisors function (A000005) with A007426."); addhelp(A035116,"A035116: tau(n)^2, where tau(n) = A000005(n)."); addhelp(A046798,"A046798: Number of divisors of 2^n+1."); addhelp(A048691,"A048691: tau(n^2), where tau = A000005."); addhelp(A048785,"A048785: tau(n^3), where tau = number of divisors (A000005)."); addhelp(A061200,"A061200: tau_5(n) = number of ordered 5-factorizations of n."); addhelp(A062319,"A062319: Number of divisors of n^n, or of A000312."); addhelp(A063524,"A063524: Characteristic function of 1."); addhelp(A074816,"A074816: a(n) = sum(d|n, tau(d)*mu(d)^2 )."); addhelp(A082476,"A082476: a(n)=sum(d|n, mu(d)^2*tau(d)^2)."); addhelp(A097988,"A097988: a(n)=Sum_(d dividing n){tau(d)}^3."); addhelp(A109399,"A109399: tau(tau(tau(n)))."); addhelp(A111217,"A111217: d_7(n), tau_7(n), number of ordered factorizations of n as n = rstuvwx (7-factorizations)."); addhelp(A111218,"A111218: d_8(n), tau_8(n), number of ordered factorizations of n as n = rstuvwxy (8-factorizations)."); addhelp(A111219,"A111219: d_9(n), tau_9(n), number of ordered factorizations of n as n = rstuvwxyz (9-factorizations)."); addhelp(A111220,"A111220: d_10(n), tau_10(n), number of ordered factorizations of n as n = rstuvwxyza (10-factorizations)."); addhelp(A111221,"A111221: d_11(n), tau_11(n), number of ordered factorizations of n as n = rstuvwxyzab (11-factorizations)."); addhelp(A111306,"A111306: d_12(n), tau_12(n), number of ordered factorizations of n as n = rstuvwxyzabc (12-factorizations).");
- Wrong comments in sequence: http://oeis.org/A061391
Bibliography
- Joe Roberts, The Lure of Integers, MAA, 1992, Integer 3, pages 8-9
- William J. LeVeque, Fundamentals of Number Theory, Dover Publications Inc, 1977, p.125