login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061200 tau_5(n) = number of ordered 5-factorizations of n. 15
1, 5, 5, 15, 5, 25, 5, 35, 15, 25, 5, 75, 5, 25, 25, 70, 5, 75, 5, 75, 25, 25, 5, 175, 15, 25, 35, 75, 5, 125, 5, 126, 25, 25, 25, 225, 5, 25, 25, 175, 5, 125, 5, 75, 75, 25, 5, 350, 15, 75, 25, 75, 5, 175, 25, 175, 25, 25, 5, 375, 5, 25, 75, 210, 25, 125, 5, 75, 25, 125, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

tau_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k=n}|, number of ordered k-factorizations of n.

tau_k(p^m) = (-1)^(k-1)*binomial(-m-1,k-1), p prime.

limit(tau_k(n)/n^epsilon, n=infinity) = 0, for any epsilon>0.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Enrique PĂ©rez Herrero)

FORMULA

tau_k(n) = Sum_{d|n} tau_(k-1)(d), tau_1(n)=1.

Dirichlet g.f.: (zeta(s))^k.

For explicit formula, see A007425.

G.f.: Sum_{k>=1} tau_4(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018

MATHEMATICA

tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 5], {n, 77}] (* Robert G. Wilson v *)

PROG

(PARI) for(n=1, 100, print1(sumdiv(n, k, sumdiv(k, x, sumdiv(x, y, numdiv(y)))), ", "))

(PARI) a(n)=sumdivmult(n, k, sumdivmult(k, x, sumdivmult(x, y, numdiv(y)))) \\ Charles R Greathouse IV, Sep 09 2014

(PARI) a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+4, 4)) \\ Charles R Greathouse IV, Oct 28 2017

CROSSREFS

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_6(n): A034695, (unordered) 2-factorization of n: A038548, (unordered) 3-factorization of n: A034836, A001055, A006218, A061201, A061202, A061203, A061204.

Column k=5 of A077592.

Sequence in context: A304300 A321653 A247940 * A255304 A050350 A196060

Adjacent sequences:  A061197 A061198 A061199 * A061201 A061202 A061203

KEYWORD

easy,nonn,mult

AUTHOR

Vladeta Jovovic, Apr 21 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 01:06 EDT 2019. Contains 321406 sequences. (Running on oeis4.)