login
A109399
Numbers with at least two 3s in their prime signature.
3
216, 1000, 1080, 1512, 2376, 2744, 2808, 3000, 3375, 3672, 4104, 4968, 5400, 6264, 6696, 6750, 7000, 7560, 7992, 8232, 8856, 9000, 9261, 9288, 10152, 10584, 10648, 11000, 11448, 11880, 12744, 13000, 13176, 13500, 13720, 14040, 14472, 15336, 15768, 16632, 17000, 17064, 17576, 17928, 18360, 18522, 19000, 19224, 19656, 20520, 20952, 21000, 21816, 22248, 23000, 23112, 23544, 23625, 24408, 24696, 24840, 25704, 26136, 27000
OFFSET
1,1
COMMENTS
In other words, if the canonical prime factorization of a term into prime powers is Product p(i)^e(i), then e(i) = 3 for at least two values of i.
Does not include all numbers with at least two unitary prime power divisors that are cubes (see example section).
The asymptotic density of this sequence is 1 - (1 + Sum_{p prime} ((p-1)/(p^4-p+1))) * Product_{p prime} (1-1/p^3+1/p^4) = 0.0024593812036570543518... . - Amiram Eldar, Jul 22 2024
LINKS
EXAMPLE
216 = 2^3*3^3, 1000 = 2^3*5^3, 1080 = 2^3*3^3*5, ...
On the other hand, 1728 = 2^6*3^3, 8000 = 2^6*5^3 and 21952 = 2^6*7^3 are not in the sequence.
MATHEMATICA
f[n_]:=Count[Last/@FactorInteger[n], 3]>1; Select[Range[8!], f]
PROG
(PARI) is(n)=#select(e->e==3, factor(n)[, 2])>1 \\ Charles R Greathouse IV, Oct 19 2015
CROSSREFS
A176359 is a subsequence.
Sequence in context: A135590 A187859 A250137 * A111029 A124581 A177493
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Matthew Vandermast, Dec 07 2010
STATUS
approved