This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035116 a(n) = tau(n)^2, where tau(n) = A000005(n). 17
 1, 4, 4, 9, 4, 16, 4, 16, 9, 16, 4, 36, 4, 16, 16, 25, 4, 36, 4, 36, 16, 16, 4, 64, 9, 16, 16, 36, 4, 64, 4, 36, 16, 16, 16, 81, 4, 16, 16, 64, 4, 64, 4, 36, 36, 16, 4, 100, 9, 36, 16, 36, 4, 64, 16, 64, 16, 16, 4, 144, 4, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS tau(n)^2 = Sum_{d|n} tau(d^2), Dirichlet convolution of A048691 and A000012 (id est: inverse Mobius transform of A048691). a(n) = A066446(n) + A184389(n). - Reinhard Zumkeller, Sep 08 2015 REFERENCES G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 304. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017; DOI: 10.1007/s11139-016-9856-3. FORMULA Dirichlet g.f.: zeta(s)^4/zeta(2s). Multiplicative with a(p^e) = (e+1)^2. - Vladeta Jovovic, Dec 03 2001 G.f.: sum(n>=1, A000005(n^2)*x^n/(1-x^n) ). - Mircea Merca, Feb 25 2014 MAPLE A035116 := proc(n) numtheory[tau](n)^2 ; end proc: seq(A035116(n), n=1..40) ; # R. J. Mathar, Apr 02 2011 MATHEMATICA DivisorSigma[0, Range[100]]^2 (* Vladimir Joseph Stephan Orlovsky, Jul 20 2011 *) PROG (MAGMA) [ NumberOfDivisors(n)^2 : n in [1..100] ]; (PARI) A035116(n)=numdiv(n)^2; (Haskell) a035116 = (^ 2) . a000005'  -- Reinhard Zumkeller, Sep 08 2015 CROSSREFS Cf. A000005, A048691, A061391. Cf. A066446, A184389, A061502. Sequence in context: A137617 A023405 A160900 * A088613 A049723 A010661 Adjacent sequences:  A035113 A035114 A035115 * A035117 A035118 A035119 KEYWORD nonn,easy,mult AUTHOR EXTENSIONS Additional comments from Vladeta Jovovic, Apr 29 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 10:53 EST 2019. Contains 319271 sequences. (Running on oeis4.)