login
A007623
Integers written in factorial base.
(Formerly M4678)
254
0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 211, 220, 221, 300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, 1201, 1210, 1211, 1220, 1221, 1300, 1301, 1310, 1311, 1320, 1321, 2000, 2001, 2010
OFFSET
0,3
COMMENTS
Places reading from right have values (1, 2, 6, 24, 120, ...) = factorials.
Also the reversed inversion vectors for the list of all finite permutations in reversed lexicographic order: A055089.
This concatenated representation is unsatisfactory for large n (above 36287999), when coefficients of 10 or greater start to appear. For these large numbers the representation given in A108731 is better. - N. J. A. Sloane, Jun 04 2012
For n < 10*10!-1, a(n) = concatenation of n-th row of triangle in A108731. - Reinhard Zumkeller, Jun 04 2012
a(n) = A049345(n) for n=0..23. - Reinhard Zumkeller, Jan 05 2014
For n = 36288000 = 10 * 10!, the digits in factorial base are {10, 0, 0, 0, 0, 0, 0, 0, 0, 0}. - Michael De Vlieger, Oct 11 2015, corrected and edited by M. F. Hasler, Nov 27 2018
The alt text in xkcd comic #2835 describes "Numbers larger than about 3.6 million" to be illegal. See links. - David Cleaver, Sep 30 2023
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 192.
F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House, 2000.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. F. Hasler (terms 0 .. 1000) & Antti Karttunen, Table of n, a(n) for n = 0..40320
Italo J. Dejter, A numeral system for the middle levels, arXiv:1012.0995 [math.CO], 2010-2015.
Italo J. Dejter, Ordering the Levels Lk and Lk+1 of B2k+1, preprint, 2015-2017.
P. Hecht, Post-Quantum Cryptography: S_381 Cyclic Subgroup of High Order, International Journal of Advanced Engineering Research and Science (IJAERS, 2017) Vol. 4, Issue 6, 78-86.
C. A. Laisant, Sur la numération factorielle, application aux permutations, Bulletin de la Société Mathématique de France, 16 (1888), p. 176-183.
Randall Munroe, Factorial Numbers, xkcd Web Comic #2835, Sep 29 2023.
Wikipedia, Factorial base
EXAMPLE
a(47) = 1321 because 47 = 1*4! + 3*3! + 2*2! + 1*1!
MAPLE
a := n -> if nargs<2 then a(n, 2) elif n<args[2] then n else a(iquo(n, args[2]), args[2]+1)*10+irem(n, args[2]) fi: 'a(i)'$i=0..200;
MATHEMATICA
factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++ ]; m = n; len = i; dList = Table[0, {len}]; Do[ currDigit = 0; While[m >= j!, m = m - j!; currDigit++ ]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; Table[FromDigits[factBaseIntDs[n]], {n, 0, 50}] (* Alonso del Arte, May 03 2006 *)
lim = 50; m = 1; While[Factorial@ m < lim, m++]; m; IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] & /@ Range@ lim (* Michael De Vlieger, Oct 11 2015, Version 10.2 *)
PROG
(PARI) apply( a(n, p=2)=if(n<p, n, a(n\p, p+1)*10 + n%p), [0..199]) \\ M. F. Hasler, Mar 27 2007; minor edit Nov 26 2018
(Haskell)
a007623 n | n <= 36287999 = read $ concatMap show (a108731_row n) :: Int
| otherwise = error "representation would be ambiguous"
-- Reinhard Zumkeller, Jun 04 2012
(Scheme, R6RS standard) (define (A007623 n) (let loop ((n n) (s 0) (p 1) (i 2)) (if (zero? n) s (let ((d (mod n i))) (loop (/ (- n d) i) (+ (* p d) s) (* 10 p) (+ 1 i)))))) ;; In older Schemes use modulo instead of mod. - Antti Karttunen, Feb 13 2016
(Python)
def a(n, p=2): return n if n<p else a(n//p, p+1)*10 + n%p
print([a(n - 1) for n in range(1, 201)]) # Indranil Ghosh, Jun 19 2017, after PARI program
(APL, Dyalog dialect) A007623 ← {⍺←2 ⋄ ⍵<⍺: ⍵ ⋄ (⍺|⍵) + ((⍺+1) ∇ ⍺(⌊÷⍨)⍵)×10} ⍝ (code from Dani Adham) - Antti Karttunen, Feb 20 2024
CROSSREFS
Cf. A000142, A034968 (sum of digits), A060130 (number of nonzero digits), A099563 (the most significant digit).
Cf. also A055089, A055881, A060112, A060495. Permutation of A064039.
See index entry "factorial base representation" for many more related sequences.
See also primorial base A049345.
Sequence in context: A325483 A235202 A049345 * A109827 A109839 A280149
KEYWORD
base,nonn,nice,easy
EXTENSIONS
More terms from R. K. Guy
STATUS
approved