login
A007622
Consider Leibniz's harmonic triangle (A003506) and look at the non-boundary terms. Sequence gives numbers appearing in denominators, sorted.
(Formerly M4096)
12
6, 12, 20, 30, 42, 56, 60, 72, 90, 105, 110, 132, 140, 156, 168, 182, 210, 240, 252, 272, 280, 306, 342, 360, 380, 420, 462, 495, 504, 506, 552, 600, 630, 650, 660, 702, 756, 812, 840, 858, 870, 930, 992, 1056, 1092, 1122, 1190, 1260, 1320, 1332
OFFSET
1,1
COMMENTS
No term is prime, about 80% are abundant, but the first few deficient are: 105, 110, 182, 495, 506, 1365, 1406, 1892, 2162, 2756, 2907, 3422, 3782, 4556, 5313, .... - Robert G. Wilson v, Aug 16 2010
A002943 = (6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, ...) is a subsequence: indeed, this is every second denominator of the first differences of the sequence 1/n. - M. F. Hasler, Oct 11 2015
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 35.
LINKS
Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
MATHEMATICA
L[n_, 1] := 1/n; L[n_, m_] := L[n, m] = L[n - 1, m - 1] - L[n, m - 1]; Take[ Union[ Flatten[ Table[ 1/L[n, m], {n, 3, 150}, {m, 2, Floor[n/2 + .5]}]]], 65]
t[n_, k_] := Denominator[n!*k!/(n + k + 1)!]; Take[ DeleteDuplicates@ Rest@ Sort@ Flatten@ Table[t[n - k, k], {n, 2, 150}, {k, n/2 + 1}], 65] (* Robert G. Wilson v, Jun 12 2014 *)
CROSSREFS
Sequence in context: A116368 A343065 A290467 * A180291 A056930 A326378
KEYWORD
nonn
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 25 2000. Rechecked Jun 27 2003.
STATUS
approved