login
A373835
a(n) = gcd(bigomega(n), A276085(n)), where bigomega (A001222), and A276085 are fully additive with a(p) = 1 and a(p) = p#/p respectively.
5
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 6, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1
OFFSET
1,4
LINKS
PROG
(PARI)
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A373835(n) = gcd(bigomega(n), A276085(n));
CROSSREFS
Cf. A001222, A276085, A373833 [= a(A276086(n))], A373836, A373837 (positions of multiples of 3).
Sequence in context: A071178 A366895 A326515 * A373369 A319864 A072776
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 19 2024
STATUS
approved