login
A373834
a(n) = 1 if n is a multiple of A276150(n), otherwise 0, where A276150 is the digit sum in the primorial base.
5
1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1
OFFSET
0
FORMULA
For n >= 1, a(n) = [A373832(n) = 0], where [ ] is the Iverson bracket.
a(n) = A373851(A276086(n)).
EXAMPLE
a(0) = 1 because 0 is a multiple of A276150(0) = 0.
a(120) = 1 because 120 s a multiple of A276150(120) = 4.
PROG
(PARI)
A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
A373834(n) = if(!n, 1, !(n%A276150(n)));
CROSSREFS
After the initial a(0)=1, characteristic function of A333426, primorial base Niven (or harshad) numbers: numbers divisible by their sum of digits in primorial base (A276150).
Sequence in context: A266591 A372553 A359779 * A132194 A354034 A174897
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 19 2024
STATUS
approved