login
A373369
a(n) = gcd(A001414(n), A059975(n)), where A001414 and A059975 are fully additive with a(p) = p and a(p) = p-1, respectively.
7
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
OFFSET
1,4
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373369(n) = gcd(A001414(n), A059975(n));
CROSSREFS
Cf. A001414, A059975, A345452 (positions of even terms).
Sequence in context: A366895 A326515 A373835 * A319864 A072776 A077481
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved