login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355755
Irregular triangle read by rows: T(n,k) is the number of unlabeled connected n-node graphs with intersection number (or edge clique cover number) k; n >= 1, 0 <= k <= floor(n^2/4).
2
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 1, 0, 1, 4, 7, 6, 2, 1, 0, 1, 6, 22, 36, 27, 13, 4, 2, 1, 0, 1, 9, 53, 161, 242, 209, 111, 43, 17, 5, 1, 1, 0, 1, 12, 114, 611, 1766, 2903, 2793, 1723, 773, 284, 86, 36, 9, 3, 2, 1, 0, 1, 16, 221, 1987, 10517, 33078, 60639, 67379, 48035, 24628, 9715, 3349, 1049, 310, 105, 36, 9, 4, 1, 1
OFFSET
1,9
LINKS
Paul Erdős, A. W. Goodman, and Louis Pósa, The representation of a graph by set intersections, Canadian Journal of Mathematics 18 (1966), 106-112.
Eric Weisstein's World of Mathematics, Intersection Number
FORMULA
T(n,0) = 0 if n > 1.
T(n,1) = 1.
T(n,2) = floor((n-1)^2/4) = A002620(n-1).
EXAMPLE
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
----+--------------------------------------------------------------
1 | 1
2 | 0 1
3 | 0 1 1
4 | 0 1 2 2 1
5 | 0 1 4 7 6 2 1
6 | 0 1 6 22 36 27 13 4 2 1
7 | 0 1 9 53 161 242 209 111 43 17 5 1 1
8 | 0 1 12 114 611 1766 2903 2793 1723 773 284 86 36 9 3 2 1
CROSSREFS
Cf. A001349 (row sums), A002620, A355754.
Sequence in context: A055290 A125629 A339160 * A141335 A133624 A377941
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved