login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125629 Coefficient expansion of characteristic polynomial of Jones polynomial for Link L6a3: f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2); p(x)=-1/(1 - x + x^2 - x^3 + x^4 + x^6). 0
-1, -1, 0, 0, 0, 1, 2, 2, 1, 0, -1, -3, -5, -5, -3, 0, 4, 9, 13, 13, 8, -1, -13, -26, -35, -34, -20, 6, 40, 74, 95 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

REFERENCES

L63a: http://katlas.math.toronto.edu/wiki/L6a3

LINKS

Table of n, a(n) for n=1..31.

FORMULA

a(n) = Coefficient Expansion of(-1/(1 - x + x^2 - x^3 + x^4 + x^6))

MATHEMATICA

f[x_] = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2); p[x] = ExpandAll[FullSimplify[x^(5/2)/f[x]]/x^11]; Table[ SeriesCoefficient[Series[p[x], {x, 0, 30}], n], {n, 0, 30}]

CROSSREFS

Sequence in context: A194522 A165013 A055290 * A141335 A133624 A030110

Adjacent sequences:  A125626 A125627 A125628 * A125630 A125631 A125632

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula, Jun 07 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 25 03:21 EDT 2014. Contains 248517 sequences.