This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125629 Coefficient expansion of characteristic polynomial of Jones polynomial for Link L6a3: f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2); p(x)=-1/(1 - x + x^2 - x^3 + x^4 + x^6). 0
 -1, -1, 0, 0, 0, 1, 2, 2, 1, 0, -1, -3, -5, -5, -3, 0, 4, 9, 13, 13, 8, -1, -13, -26, -35, -34, -20, 6, 40, 74, 95 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 REFERENCES L63a: http://katlas.math.toronto.edu/wiki/L6a3 LINKS FORMULA a(n) = Coefficient Expansion of(-1/(1 - x + x^2 - x^3 + x^4 + x^6)) MATHEMATICA f[x_] = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2); p[x] = ExpandAll[FullSimplify[x^(5/2)/f[x]]/x^11]; Table[ SeriesCoefficient[Series[p[x], {x, 0, 30}], n], {n, 0, 30}] CROSSREFS Sequence in context: A194522 A165013 A055290 * A141335 A133624 A030110 Adjacent sequences:  A125626 A125627 A125628 * A125630 A125631 A125632 KEYWORD uned,sign AUTHOR Roger L. Bagula, Jun 07 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 14:38 EDT 2017. Contains 289642 sequences.