

A125629


Coefficient expansion of characteristic polynomial of Jones polynomial for Link L6a3: f(x) = 1/x^(5/2)  1/x^(9/2) + 1/x^(11/2) + 1/x^(13/2) + 1/x^(15/2)  1/x^(17/2); p(x)=1/(1  x + x^2  x^3 + x^4 + x^6).


0



1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 1, 3, 5, 5, 3, 0, 4, 9, 13, 13, 8, 1, 13, 26, 35, 34, 20, 6, 40, 74, 95
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


REFERENCES

L63a: http://katlas.math.toronto.edu/wiki/L6a3


LINKS

Table of n, a(n) for n=1..31.


FORMULA

a(n) = Coefficient Expansion of(1/(1  x + x^2  x^3 + x^4 + x^6))


MATHEMATICA

f[x_] = 1/x^(5/2)  1/x^(9/2) + 1/x^(11/2) + 1/x^(13/2) + 1/x^(15/2)  1/x^(17/2); p[x] = ExpandAll[FullSimplify[x^(5/2)/f[x]]/x^11]; Table[ SeriesCoefficient[Series[p[x], {x, 0, 30}], n], {n, 0, 30}]


CROSSREFS

Sequence in context: A194522 A165013 A055290 * A141335 A133624 A030110
Adjacent sequences: A125626 A125627 A125628 * A125630 A125631 A125632


KEYWORD

uned,sign


AUTHOR

Roger L. Bagula, Jun 07 2007


STATUS

approved



