login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125629 Coefficient expansion of characteristic polynomial of Jones polynomial for Link L6a3: f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2); p(x)=-1/(1 - x + x^2 - x^3 + x^4 + x^6). 0
-1, -1, 0, 0, 0, 1, 2, 2, 1, 0, -1, -3, -5, -5, -3, 0, 4, 9, 13, 13, 8, -1, -13, -26, -35, -34, -20, 6, 40, 74, 95 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

REFERENCES

L63a: http://katlas.math.toronto.edu/wiki/L6a3

LINKS

Table of n, a(n) for n=1..31.

FORMULA

a(n) = Coefficient Expansion of(-1/(1 - x + x^2 - x^3 + x^4 + x^6))

MATHEMATICA

f[x_] = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2); p[x] = ExpandAll[FullSimplify[x^(5/2)/f[x]]/x^11]; Table[ SeriesCoefficient[Series[p[x], {x, 0, 30}], n], {n, 0, 30}]

CROSSREFS

Sequence in context: A194522 A165013 A055290 * A141335 A133624 A030110

Adjacent sequences:  A125626 A125627 A125628 * A125630 A125631 A125632

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula, Jun 07 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 06:55 EST 2016. Contains 279043 sequences.