login
A355753
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.
6
3, 360, 2805, 10794, 29511, 65868, 128505, 227790, 375819, 586416, 875133, 1259250, 1757775, 2391444, 3182721, 4155798, 5336595, 6752760, 8433669, 10410426, 12715863, 15384540, 18452745, 21958494, 25941531, 30443328, 35507085, 41177730, 47501919, 54528036, 62306193, 70888230, 80327715, 90679944, 102001941, 114352458, 127791975
OFFSET
1,1
COMMENTS
Numbers D > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D == 3 (mod 6), C - D = 3*(2*n - 1) for n > 1, and the difference of the positive cubes C^3 - D^3 is equal to centered cube numbers, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = A355752(n), and D = a(n) (this sequence).
There are infinitely many such numbers a(n) = D in this sequence.
Subsequence of A352136 and of A352223.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
A355752(n)^3 - a(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and A355752(n) - a(n) = 3*(2*n - 1).
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 3, a(2) = 360 and a(3) = 2805.
a(n) can be extended for negative n such that a(-n) = a(n+1) + (2n + 1).
G.f.: -3*x*(1+115*x+345*x^2+113*x^3+2*x^4) / (x-1)^5 . - R. J. Mathar, Aug 03 2022
EXAMPLE
a(1) = 3 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3*(2*1 - 1).
a(2) = 360 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 - 1) / 2 = 2805.
a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2805 - 3*360 + 3 + 1728*2 = 10794.
MAPLE
restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3-1); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jul 15 2022
STATUS
approved