login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355754
Irregular triangle read by rows: T(n,k) is the number of unlabeled n-node graphs with intersection number (or edge clique cover number) k; n >= 1, 0 <= k <= floor(n^2/4).
4
1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 1, 4, 9, 10, 7, 2, 1, 1, 5, 17, 36, 46, 30, 14, 4, 2, 1, 1, 6, 28, 97, 219, 281, 226, 116, 45, 18, 5, 1, 1, 1, 7, 43, 226, 872, 2104, 3170, 2927, 1774, 793, 290, 87, 37, 9, 3, 2, 1, 1, 8, 62, 472, 2966, 12882, 36595, 63842, 69294, 48881, 24939, 9808, 3387, 1059, 313, 107, 37, 9, 4, 1, 1
OFFSET
1,5
LINKS
Paul Erdős, A. W. Goodman, and Louis Pósa, The representation of a graph by set intersections, Canadian Journal of Mathematics 18 (1966), 106-112.
Eric Weisstein's World of Mathematics, Intersection Number
FORMULA
T(n,0) = 1.
T(n,1) = n-1.
T(n,2) = floor((n-2)*(2*n^2+7*n-12)/24) = A005744(n-2) = (4*n^3+6*n^2-52*n+45+3*(-1)^n)/48.
EXAMPLE
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
----+--------------------------------------------------------------
1 | 1
2 | 1 1
3 | 1 2 1
4 | 1 3 4 2 1
5 | 1 4 9 10 7 2 1
6 | 1 5 17 36 46 30 14 4 2 1
7 | 1 6 28 97 219 281 226 116 45 18 5 1 1
8 | 1 7 43 226 872 2104 3170 2927 1774 793 290 87 37 9 3 2 1
CROSSREFS
Cf. A000088 (row sums), A355755.
Sequence in context: A331598 A123974 A238350 * A319844 A193736 A292975
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved