OFFSET
0,6
REFERENCES
M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..500, flattened
M. Archibald, A. Blecher, and A. Knopfmacher, Fixed Points in Compositions and Words, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
EXAMPLE
Triangle T(n,k) begins:
00 : 1;
01 : 0, 1;
02 : 1, 1;
03 : 2, 1, 1;
04 : 3, 4, 1;
05 : 6, 7, 3;
06 : 11, 16, 4, 1;
07 : 22, 29, 12, 1;
08 : 42, 60, 23, 3;
09 : 82, 120, 47, 7;
10 : 161, 238, 100, 12, 1;
11 : 316, 479, 198, 30, 1;
12 : 624, 956, 404, 61, 3;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, expand(
add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
seq(T(n), n=0..20);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 25 2014
STATUS
approved