OFFSET
0,4
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
Sum_{k=0..n} k * T(n,k) = A055897(n).
Sum_{k=1..n} T(n,k) = A350134(n).
From Mélika Tebni, Nov 24 2022: (Start)
T(n,k) = binomial(n, k)*|A069856(n-k)|.
E.g.f. column k: exp(-x)*x^k / ((1 + LambertW(-x))*k!).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j, k)*binomial(n, j)*(n-j)^(n-j). (End)
EXAMPLE
T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
1;
0, 1;
3, 0, 1;
17, 9, 0, 1;
169, 68, 18, 0, 1;
2079, 845, 170, 30, 0, 1;
31261, 12474, 2535, 340, 45, 0, 1;
554483, 218827, 43659, 5915, 595, 63, 0, 1;
11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
...
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10);
# second Maple program:
A350212 := (n, k)-> add((-1)^(j-k)*binomial(j, k)*binomial(n, j)*(n-j)^(n-j), j=0..n):
seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
MATHEMATICA
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 19 2021
STATUS
approved