OFFSET
0,7
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
T(n,k) = binomial(n,k) * (n-k-1)^(n-k).
From Mélika Tebni, Apr 02 2023: (Start)
E.g.f. of column k: -x / (LambertW(-x)*(1+LambertW(-x)))*x^k / k!.
Sum_{k=0..n} k^k*T(n,k) = A217701(n). (End)
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 1;
8, 3, 0, 1;
81, 32, 6, 0, 1;
1024, 405, 80, 10, 0, 1;
15625, 6144, 1215, 160, 15, 0, 1;
279936, 109375, 21504, 2835, 280, 21, 0, 1;
5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
...
MAPLE
T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
seq(seq(T(n, k), k=0..n), n=0..10);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 30 2021
STATUS
approved