This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304336 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/(k!)^2, triangle read by rows, n >= 0 and 0 <= k <= n. 5
 1, 0, 1, 0, 1, 3, 0, 1, 15, 10, 0, 1, 63, 140, 35, 0, 1, 255, 1470, 1050, 126, 0, 1, 1023, 14080, 21945, 6930, 462, 0, 1, 4095, 130130, 400400, 252252, 42042, 1716, 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS FORMULA T(n, k) = A304330(n, k)/(k!)^2. T(n, k) = A304334(n, k)/k!. EXAMPLE Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1,     3; [3] 0, 1,    15,      10; [4] 0, 1,    63,     140,      35; [5] 0, 1,   255,    1470,    1050,     126; [6] 0, 1,  1023,   14080,   21945,    6930,     462; [7] 0, 1,  4095,  130130,  400400,  252252,   42042,   1716; [8] 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435; MAPLE A304336 := (n, k) -> add((-1)^j*binomial(2*k, j)*(k-j)^(2*n), j=0..k)/(k!)^2: for n from 0 to 8 do seq(A304336(n, k), k=0..n) od; PROG (PARI) T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/(k!)^2; tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 11 2018 CROSSREFS Row sums are A304338, T(n,n) = A088218 and A001700, T(n,n-1) ~ A002803, T(n,2) ~ A024036, T(n,3) ~ bisection of A174395. Cf. A304330, A304334. Sequence in context: A277410 A289546 A279031 * A287315 A256311 A022695 Adjacent sequences:  A304333 A304334 A304335 * A304337 A304338 A304339 KEYWORD nonn,tabl AUTHOR Peter Luschny, May 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 01:08 EDT 2019. Contains 321479 sequences. (Running on oeis4.)