login
A022695
Expansion of Product_{m>=1} (1 + m*q^m)^-3.
2
1, -3, 0, -1, 18, -12, 11, -54, 84, -218, 243, -270, 1046, -1524, 1692, -3547, 7722, -11868, 15364, -29130, 52416, -83467, 125514, -190716, 380406, -628290, 808218, -1394734, 2585895, -3784566, 5678826, -9514614, 15635424, -25331990, 37563810, -57387042, 100038145, -156346224
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 3, g(n) = -n. - Seiichi Manyama, Dec 30 2017
LINKS
FORMULA
G.f.: exp(-3*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MATHEMATICA
With[{nmax=50}, CoefficientList[Series[Product[1/(1+k*q^k)^3, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 25 2018 *)
PROG
(PARI) first(n) = Vec(prod(m=1, n, (1+m*x^m)^(-3)) + O(x^n)) \\ Iain Fox, Dec 30 2017
(Magma) Coefficients(&*[1/(1+m*x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=3 of A297325.
Sequence in context: A287315 A350212 A256311 * A278325 A364527 A226780
KEYWORD
sign
STATUS
approved