login
A327070
Number of non-connected simple labeled graphs covering n vertices.
14
1, 0, 0, 0, 3, 40, 745, 21028, 973889, 80133088, 12523299729, 3847333778244, 2341705361100633, 2821794389863015840, 6728707109106848947081, 31769173063866390661714996, 297278309767391164611330317921
OFFSET
0,5
COMMENTS
We consider the empty graph to be neither connected (one component) nor disconnected (more than one component).
FORMULA
a(n) = A006129(n) - A001187(n), if we assume A001187(0) = 0 and A001187(1) = 0.
Inverse binomial transform of A327199.
EXAMPLE
The a(4) = 3 graphs:
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[csm[#]]!=1&]], {n, 0, 5}]
CROSSREFS
Column k = 0 of A327149.
The unlabeled version is A327075.
The non-covering version is A327199.
Sequence in context: A051571 A019654 A361069 * A156356 A143640 A341849
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 24 2019
STATUS
approved