login
A143640
E.g.f. satisfies: A(x) = exp(x*A(((x+1)^9-1)/9)).
2
1, 1, 3, 40, 829, 26096, 1216327, 76192824, 6123167801, 615764308672, 75666884850091, 11126407433017944, 1925795142055097557, 387184416676122044032, 89407267196505737775311, 23480531627128442036603416, 6953687155109949099972629873
OFFSET
0,3
LINKS
MAPLE
A:= proc(n, k::nonnegint) option remember; if n<=0 or k=0 then 1 else A(n-1, k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x, n+1), polynom), x) end: a:= n-> coeff(A(n, 9)(x), x, n)*n!: seq(a(n), n=0..20);
MATHEMATICA
A[n_, k_] := Module[{f}, f[x_] = If[n <= 0 || k == 0, 1, A[n-1, k][((x+1)^k-1)/k]]; Normal[Series[Exp[x*f[x]], { x, 0, n+1}]] /. x -> #]&; a[n_] := Coefficient[A[n, 9][x], x, n]*n!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. 9th column of A143632.
Sequence in context: A361069 A327070 A156356 * A341849 A358368 A260754
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved