OFFSET
0,9
COMMENTS
A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325
Gus Wiseman, The 10 + 12 + 16 graphs counted in row n = 4.
EXAMPLE
Triangle begins:
1
1 0
0 1 0
1 0 3 0
10 12 0 16 0
253 200 150 0 125 0
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[If[n<=1&&k==0, 1, Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#, i]]<n||Length[csm[Delete[#, i]]]>1, {i, Length[#]}], True]==k&]]], {n, 0, 4}, {k, 0, n}]
PROG
(PARI) \\ p is e.g.f. of A053549.
T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0, k-2)!*Vecrev(v[k], k)) }
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 24 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020
STATUS
approved