login
A319692
a(n) = Product_{d|n, d<n} prime(1+A001414(d)), where A001414(d) gives the sum of prime factors of d, with repetition.
2
1, 2, 2, 10, 2, 70, 2, 110, 14, 130, 2, 10010, 2, 190, 182, 1870, 2, 15470, 2, 27170, 266, 370, 2, 3233230, 26, 430, 238, 60610, 2, 5169710, 2, 43010, 518, 610, 494, 74364290, 2, 710, 602, 13394810, 2, 15543710, 2, 175010, 71162, 890, 2, 2156564410, 38, 76570, 854, 250690, 2, 10318490, 962, 38123690, 994, 1130, 2, 971341981610, 2, 1310, 140182, 1333310, 1118
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{d|n, d<n} A000040(1+A001414(d)).
For all n >= 1:
A001221(a(n)) = A305611(n).
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A319692(n) = { my(m=1); fordiv(n, d, if(d<n, m *= prime(1+A001414(d)))); (m); }; \\ Antti Karttunen, Oct 02 2018
CROSSREFS
Cf. A001414, A319693 (rgs-transform).
Cf. also A319352.
Sequence in context: A137450 A344998 A321415 * A308693 A339481 A163937
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 02 2018
STATUS
approved