login
A319352
a(n) = Product_{d|n, d<n} prime(1+A056239(d)), where A056239(d) gives the weight of the partition whose Heinz-number is d.
3
1, 2, 2, 6, 2, 30, 2, 30, 10, 42, 2, 1050, 2, 66, 70, 210, 2, 2310, 2, 2310, 110, 78, 2, 80850, 14, 102, 110, 4290, 2, 210210, 2, 2310, 130, 114, 154, 1651650, 2, 138, 170, 210210, 2, 510510, 2, 6630, 10010, 174, 2, 11561550, 22, 7854, 190, 9690, 2, 510510, 182, 510510, 230, 186, 2, 2555102550, 2, 222, 20570, 30030, 238, 881790, 2
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{d|n, d<n} prime(1+A056239(d)).
For all n >= 1:
A001221(a(n)) = A304793(n).
A001222(a(n)) = A032741(n).
1+A056169(a(n)) = A301855(n).
PROG
(PARI)
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
A319352(n) = { my(m=1); fordiv(n, d, if(d<n, m *= prime(1+A056239(d)))); (m); };
CROSSREFS
Cf. A056239, A319353 (rgs-transform).
Sequence in context: A359004 A306387 A308692 * A300834 A293214 A293216
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 17 2018
STATUS
approved