login
A308693
a(n) = Sum_{d|n} d^(3*(n/d - 1)).
2
1, 2, 2, 10, 2, 93, 2, 578, 731, 4223, 2, 56765, 2, 262489, 547068, 2359810, 2, 31173510, 2, 152949071, 387538140, 1073743157, 2, 20134371189, 244140627, 68719478935, 282430067924, 618515646977, 2, 12056339359929, 2, 39582552821762, 205891133866212
OFFSET
1,2
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - k^3*x^k)^(1/k^4)) = Sum_{k>=1} a(k)*x^k/k.
a(p) = 2 for prime p.
G.f.: Sum_{k>=1} x^k/(1 - k^3*x^k). - Ilya Gutkovskiy, Jul 25 2019
MATHEMATICA
a[n_] := DivisorSum[n, #^(3*(n/# - 1)) &]; Array[a, 33] (* Amiram Eldar, May 09 2021 *)
PROG
(PARI) {a(n) = sumdiv(n, d, d^(3*(n/d-1)))}
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k^3*x^k)^(1/k^4)))))
CROSSREFS
Column k=3 of A308694.
Sequence in context: A344998 A321415 A319692 * A339481 A163937 A083457
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 17 2019
STATUS
approved