login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163937 Triangle related to the o.g.f.s. of the right hand columns of A028421 (E(x,m=2,n)). 5
1, 1, 2, 2, 10, 3, 6, 52, 43, 4, 24, 308, 472, 136, 5, 120, 2088, 4980, 2832, 369, 6, 720, 16056, 53988, 49808, 13638, 918, 7, 5040, 138528, 616212, 826160, 381370, 57540, 2167, 8, 40320, 1327392, 7472952, 13570336, 9351260, 2469300, 222908, 4948, 9 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The asymptotic expansions of the higher order exponential integral E(x,m=2,n) lead to triangle A028421, see A163931 for information on the E(x,m,n). The o.g.f.s. of the right hand columns of triangle A028421 have a nice structure Gf(p) = W2(z,p)/(1-z)^(2*p) with p = 1 for the first right hand column, p = 2 for the second right hand column, etc.. The coefficients of the W2(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. The row sums of this triangle lead to A001147 (minus a(0)), see A163936 for more information.

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

FORMULA

a(n,m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*((m-k)/1!)*binomial(2*n,k) *stirling1(m+n-k-1,m-k), 1<= m <= n.

EXAMPLE

The first few W2(z,p) polynomials are:

W2(z,p=1) = 1/(1-z)^2

W2(z,p=2) = (1+2*z)/(1-z)^4

W2(z,p=3) = (2+10*z+3*z^2)/(1-z)^6

W2(z,p=4) = (6+52*z+43*z^2+4*z^3)/(1-z)^8

MAPLE

with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k)/1!)*binomial(2*n, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9);  # [Johannes W. Meijer, revised Nov 27 2012]

MATHEMATICA

Table[Sum[(-1)^(n + k + 1)*((m - k)/1!)*Binomial[2*n, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)

PROG

(PARI) for(n=1, 10, for(m=1, n, print1(sum(k=0, m-1, (-1)^(n+k+1)*((m-k)/1!)*binomial(2*n, k) *stirling1(m+n-k-1, m-k)), ", "))) \\ G. C. Greubel, Aug 13 2017

CROSSREFS

Row sums equal A001147 (n>=1).

A000142, 2*A001705, are the first two left hand columns.

A000027 is the first right hand column.

Cf. A163931 (E(x,m,n)) and A028421.

Cf. A163936 (E(x,m=1,n)), A163938 (E(x,m=3,n)) and A163939 (E(x,m=4,n)).

Sequence in context: A038036 A133631 A137450 * A083457 A163808 A223126

Adjacent sequences:  A163934 A163935 A163936 * A163938 A163939 A163940

KEYWORD

easy,nonn,tabl,changed

AUTHOR

Johannes W. Meijer, Aug 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 07:13 EDT 2017. Contains 290635 sequences.