login
A319263
The 10-adic integer z = ...57109377 satisfying z^7 + 1 = w, w^7 + 1 = x, x^7 + 1 = y, and y^7 + 1 = z.
8
7, 7, 3, 9, 0, 1, 7, 5, 3, 3, 5, 6, 5, 6, 7, 0, 9, 9, 9, 6, 7, 8, 6, 9, 2, 8, 2, 8, 0, 9, 1, 6, 2, 2, 4, 9, 9, 9, 4, 5, 8, 4, 6, 0, 7, 4, 5, 9, 6, 0, 1, 3, 0, 6, 9, 2, 3, 8, 4, 4, 7, 4, 5, 7, 1, 4, 7, 7, 6, 8, 1, 1, 1, 3, 7, 6, 4, 4, 1, 0, 4, 4, 0, 6, 5, 4, 8, 9, 4, 5, 2
OFFSET
0,1
COMMENTS
There is one other ring of four 10-adic integers meeting the same conditions.
LINKS
EXAMPLE
57109377^7 + 1 == 72890754 (mod 10^8), 72890754^7 + 1 == 9600385 (mod 10^8), 9600385^7 + 1 == 22890626 (mod 10^8), and 22890626^7 + 1 == 57109377 (mod 10^8).
CROSSREFS
Cf. A319260 (w), A319261 (x), A319262 (y).
Sequence in context: A212299 A193751 A290565 * A318386 A318334 A233699
KEYWORD
nonn,base
AUTHOR
Patrick A. Thomas, Sep 16 2018
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Sep 21 2018
More terms from Seiichi Manyama, Sep 21 2018
STATUS
approved