

A319261


The 10adic integer x = ...09600385 satisfying x^7 + 1 = y, y^7 + 1 = z, z^7 + 1 = w, and w^7 + 1 = x.


8



5, 8, 3, 0, 0, 6, 9, 0, 5, 9, 7, 3, 9, 3, 5, 3, 7, 5, 0, 7, 5, 7, 2, 3, 7, 8, 9, 4, 7, 3, 3, 3, 0, 4, 6, 4, 3, 3, 3, 4, 2, 3, 9, 4, 2, 2, 0, 2, 0, 3, 2, 3, 4, 4, 3, 1, 9, 1, 6, 8, 5, 7, 0, 7, 5, 3, 5, 2, 6, 6, 4, 9, 1, 4, 5, 0, 0, 0, 3, 9, 0, 9, 7, 7, 1, 8, 3, 8, 2, 1, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

There is one other ring of four 10adic integers meeting the same conditions.


LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..5000


EXAMPLE

9600385^7 + 1 == 22890626 (mod 10^8), 22890626^7 + 1 == 57109377 (mod 10^8), 57109377^7 + 1 == 72890754 (mod 10^8), and 72890754^7 + 1 == 9600385 (mod 10^8).


CROSSREFS

Cf. A319260 (w), A319262 (y), A319263 (z).
Cf. A317850, A317864.
Sequence in context: A198844 A156035 A284697 * A010489 A196567 A200685
Adjacent sequences: A319258 A319259 A319260 * A319262 A319263 A319264


KEYWORD

nonn,base


AUTHOR

Patrick A. Thomas, Sep 16 2018


EXTENSIONS

Offset changed to 0 by Seiichi Manyama, Sep 21 2018
More terms from Seiichi Manyama, Sep 21 2018


STATUS

approved



