OFFSET
0,1
COMMENTS
With one side s_1 = 1/2+1/3 = 5/6, and with area A = s_1*s_2 = sum(n=2,infinity, 1/n^2) = Pi^2/6 - 1 = A013661 - 1, the second side, s_2, can be solved.
The current packing record holder is Marc Paulhus, who developed a packing algorithm (see Link).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
M. M. Paulhus, An Algorithm for Packing Squares, Journal of Combinatorial Theory,1998, A,82(2), pages 147-157.
Pegg Jr, Ed., Wolfram Demonstrations Project, Packing Squares with Side 1/n
Wikipedia, Packing Squares with Side 1/n
FORMULA
Equals (Pi^2-6)/5 = A164102/10 - 6/5.
EXAMPLE
0.77392088021787172376689819997523022706273988144815812528266987524400896448...
MATHEMATICA
RealDigits[(Pi^2-6)/5, 10, 120][[1]] (* Harvey P. Dale, Aug 21 2017 *)
PROG
(PARI) (Pi^2-6)/5;
(Magma) C<i> := ComplexField(); (Pi(C)^2-6)/5 // G. C. Greubel, Jan 26 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
John W. Nicholson, Dec 15 2013
STATUS
approved