login
A317850
The 10-adic integer x = ...603097394847873 satisfying x^7 + 1 = y and y^7 + 1 = x.
6
3, 7, 8, 7, 4, 8, 4, 9, 3, 7, 9, 0, 3, 0, 6, 2, 5, 4, 0, 8, 1, 7, 5, 0, 6, 8, 5, 5, 3, 9, 7, 7, 0, 4, 0, 4, 1, 7, 6, 0, 7, 2, 2, 1, 2, 1, 8, 7, 6, 3, 6, 0, 3, 5, 2, 7, 5, 6, 2, 3, 1, 9, 8, 8, 1, 8, 4, 8, 0, 0, 6, 5, 5, 3, 1, 2, 4, 1, 2, 6, 3, 7, 6, 6, 6, 4, 1, 4, 0, 0, 0, 3, 6, 8, 3, 8, 3, 0, 9, 2
OFFSET
0,1
COMMENTS
Data generated using calculator (first 15 terms) and MATLAB (next 85 terms). Conjecture: There exists a pair of 10-adic integers satisfying x^n + 1 = y and y^n + 1 = x iff n == 3, 7, or 15 (mod 20).
LINKS
EXAMPLE
603097394847873^7 + 1 == 480203107738498 (mod 10^15) and 480203107738498^7 + 1 == 603097394847873 (mod 10^15).
CROSSREFS
Cf. A317864 (y).
Sequence in context: A372863 A244334 A011398 * A181828 A328980 A059101
KEYWORD
nonn,base
AUTHOR
Patrick A. Thomas, Sep 01 2018
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Sep 20 2018
STATUS
approved