login
A319262
The 10-adic integer y = ...22890626 satisfying y^7 + 1 = z, z^7 + 1 = w, w^7 + 1 = x, and x^7 + 1 = y.
8
6, 2, 6, 0, 9, 8, 2, 2, 7, 2, 4, 6, 4, 5, 9, 9, 7, 2, 2, 0, 3, 5, 8, 8, 4, 3, 4, 2, 2, 8, 7, 2, 2, 6, 1, 8, 4, 6, 9, 7, 4, 2, 1, 4, 7, 8, 3, 2, 3, 3, 6, 6, 3, 2, 8, 7, 1, 6, 7, 6, 7, 3, 5, 9, 4, 3, 3, 8, 6, 6, 4, 2, 6, 4, 5, 2, 8, 2, 5, 9, 3, 3, 8, 9, 9, 8, 2, 8, 5, 6, 6, 4, 4
OFFSET
0,1
COMMENTS
There is one other ring of four 10-adic integers meeting the same conditions.
LINKS
EXAMPLE
22890626^7 + 1 == 57109377 (mod 10^8), 57109377^7 + 1 == 72890754 (mod 10^8), 72890754^7 + 1 == 9600385 (mod 10^8), and 9600385^7 + 1 == 22890626 (mod 10^8).
CROSSREFS
Cf. A319260 (w), A319261 (x) A319263 (z).
Sequence in context: A107496 A318333 A318385 * A126664 A266389 A198986
KEYWORD
nonn,base
AUTHOR
Patrick A. Thomas, Sep 16 2018
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Sep 21 2018
More terms from Seiichi Manyama, Sep 21 2018
STATUS
approved