login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317716 Square array A(n, k), read by antidiagonals downwards: k-th prime p such that cyclic digit shifts produce exactly n different primes. 3
2, 3, 13, 5, 17, 113, 7, 31, 131, 1193, 11, 37, 197, 1931, 11939, 19, 71, 199, 3119, 19391, 193939, 23, 73, 311, 3779, 19937, 199933, 17773937, 29, 79, 337, 7793, 37199, 319993, 39371777, 119139133, 41, 97, 373, 7937, 39119, 331999, 71777393, 133119139 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

k-th prime p such that A262988(p) = n.

Are all rows of the array infinite?

A term q of A270083 occurs in row A055642(q) - 1 in this array.

A term r of A293663 occurs in row A055642(r) in this array.

Row 1 is a supersequence of A004022.

Column 1 is A247153.

LINKS

Robert G. Wilson v, Antidiagonals n = 1..13, flattened

EXAMPLE

Array starts

          2,         3,         5,         7,        11,        19,        23, ...

         13,        17,        31,        37,        71,        73,        79, ...

        113,       131,       197,       199,       311,       337,       373, ...

       1193,      1931,      3119,      3779,      7793,      7937,      9311, ...

      11939,     19391,     19937,     37199,     39119,     71993,     91193, ...

     193939,    199933,    319993,    331999,    391939,    393919,    919393, ...

   17773937,  39371777,  71777393,  73937177,  77393717,  77739371,  93717773, ...

  119139133, 133119139, 139133119, 191391331, 311913913, 331191391, 913311913, ...

...

PROG

(PARI) eva(n) = subst(Pol(n), x, 10)

rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v

count_primes(n) = my(d=digits(n), i=0); while(1, if(ispseudoprime(eva(d)), i++); d=rot(d); if(d==digits(n), return(i)))

row(n, terms) = my(i=0); forprime(p=1, , if(count_primes(p)==n, print1(p, ", "); i++); if(i==terms, print(""); break))

array(rows, cols) = for(x=1, rows, row(x, cols))

array(7, 7) \\ print initial 7 rows and 7 columns of array

CROSSREFS

Cf. A004022, A055642, A247153, A262988, A270083, A293663.

Sequence in context: A085400 A067523 A035515 * A076988 A128369 A087568

Adjacent sequences:  A317713 A317714 A317715 * A317717 A317718 A317719

KEYWORD

nonn,base,tabl

AUTHOR

Felix Fröhlich, Aug 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 02:39 EDT 2020. Contains 337346 sequences. (Running on oeis4.)