|
|
A247153
|
|
a(n) = smallest prime p for which cyclic digit shifts produce exactly n different primes, or 0 if no such p exists for n.
|
|
3
|
|
|
2, 13, 113, 1193, 11939, 193939, 17773937, 119139133, 111133719913, 111119917373, 111393733793, 1117739771979737
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is equal to the smallest n-digit non-repunit prime in A016114, unless no n-digit non-repunit prime exists in A016114. In that case, the number of digits of a(n), if it exists, must be > n.
From David A. Corneth, Aug 06 2018: (Start)
Do we have leading digit of a(n) <= any digit from a(n)?
For n > 1, can a(n) contain a digit d with gcd(10, d) > 1? (End)
Smallest prime p such that A262988(p) = n. - Felix Fröhlich, Aug 06 2018
|
|
LINKS
|
Table of n, a(n) for n=1..12.
P. De Geest, Circular primes
|
|
CROSSREFS
|
Cf. A016114, A262988. This is column 1 of A317716.
Sequence in context: A046813 A208316 A096497 * A088604 A127891 A110369
Adjacent sequences: A247150 A247151 A247152 * A247154 A247155 A247156
|
|
KEYWORD
|
nonn,base,more
|
|
AUTHOR
|
Felix Fröhlich, Nov 21 2014
|
|
EXTENSIONS
|
a(7)-a(8) from P. De Geest's website added by Felix Fröhlich, Nov 26 2014
a(9)-a(12) from Robert G. Wilson v, Aug 06 2018
|
|
STATUS
|
approved
|
|
|
|