login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293663 Circular primes that are not repunits. 12
2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Relative complement of A004022 in A068652.

Conjecture: The sequence is finite.

From Michael De Vlieger, Dec 30 2017: (Start)

Primes > 5 in this sequence must only have digits that are in the reduced residue system modulo 10, i.e., {1, 3, 7, 9}.

There are 54 terms that have 6 or fewer decimal digits, the largest of which is 999331.

a(55) must be larger than 10^11. (End) [Corrected by Felix Fröhlich, Mar 15 + 24 2019]

From Felix Fröhlich, Mar 16 2019: (Start)

a(55) > 10^23 if it exists (cf. De Geest link).

Numbers k such that A262988(k) = A055642(k). (End)

LINKS

Felix Fröhlich, Table of n, a(n) for n = 1..54

P. De Geest, Circular Primes

EXAMPLE

The numbers resulting from cyclic permutations of the digits of 1193 are 1931, 9311 and 3119, respectively and all those numbers are prime, so 1193, 1931, 3119 and 9311 are terms of the sequence.

MATHEMATICA

Select[Prime@ Range[10^5], Function[w, And[AllTrue[Array[FromDigits@ RotateRight[w, #] &, Length@ w - 1], PrimeQ], Union@ w != {1} ]]@ IntegerDigits@ # &] (* or *)

Select[Flatten@ Array[FromDigits /@ Most@ Rest@ Tuples[{1, 3, 7, 9}, #] &, 9, 2], Function[w, And[AllTrue[Array[FromDigits@ RotateRight[w, #] &, Length@ w], PrimeQ], Union@ w != {1} ]]@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 30 2017 *)

PROG

(PARI) eva(n) = subst(Pol(n), x, 10)

rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v

is_circularprime(p) = my(d=digits(p), r=rot(d)); if(vecmin(d)==0, return(0), while(1, if(!ispseudoprime(eva(r)), return(0)); r=rot(r); if(r==d, return(1))))

forprime(p=1, , if(vecmax(digits(p)) > 1, if(is_circularprime(p), print1(p, ", "))))

(PARI) /* The following is a much faster program that only tests numbers whose decimal expansion consists of digits from the set {1, 3, 7, 9}. */

eva(n) = subst(Pol(n), x, 10)

next_v(vec) = my(k=#vec); if(vecmin(vec)==9, vec=concat(vector(#vec, t, 1), [3]); return(vec)); while(k > 0, if(vec[k]==9, vec[k]=1, if(vec[k]==3, vec[k]=7; return(vec), vec[k]=vec[k]+2, return(vec))); k--)

rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v

search(n) = my(d=digits(n), e=[], ed=0); while(1, e=rot(d); while(1, if(!ispseudoprime(eva(e)), break, e=rot(e); if(e==d && ispseudoprime(eva(e)), print1(eva(d), ", "); break))); d=next_v(d))

searchfrom(n) = if(n < 12, forprime(p=n, 10, print1(p, ", ")); search(13), my(d=digits(n)); for(k=1, #d, if(d[k]%2==0, d[k]++, if(d[k]==5, d[k]=7))); search(eva(d)))

/* Start a search from 1 upwards as follows: */

searchfrom(1) \\ Felix Fröhlich, Mar 23 2019

CROSSREFS

Cf. A004022, A055642, A068652, A262988, A293142.

Cf. base-b nonrepunit circular primes: A293657 (b=4), A293658 (b=5), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293662 (b=9).

Sequence in context: A172979 A118724 A046732 * A317688 A046703 A118722

Adjacent sequences:  A293660 A293661 A293662 * A293664 A293665 A293666

KEYWORD

nonn,base

AUTHOR

Felix Fröhlich, Dec 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 06:52 EDT 2019. Contains 327119 sequences. (Running on oeis4.)