|
|
A067523
|
|
The smallest prime with a possible given digit sum.
|
|
5
|
|
|
2, 3, 13, 5, 7, 17, 19, 29, 67, 59, 79, 89, 199, 389, 499, 599, 997, 1889, 1999, 2999, 4999, 6899, 17989, 8999, 29989, 39989, 49999, 59999, 79999, 98999, 199999, 389999, 598999, 599999, 799999, 989999, 2998999, 2999999, 4999999, 6999899, 8989999
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Except for 3 no other prime has a digit sum which is a multiple of 3. Hence the possible digit sums are 2,3,4,5,7,8,10,11,13,14,16,..., etc. Conjecture: For every possible digit sum there exists a prime.
For n > 2, this is (conjecturally) the smallest prime with digit sum A001651(n). - Lekraj Beedassy, Mar 04 2009
|
|
LINKS
|
Table of n, a(n) for n=1..41.
|
|
FORMULA
|
a(n) = min(prime(i): A007605(i) = A133223(i)). - R. J. Mathar, Nov 06 2018
|
|
PROG
|
(PARI) A067523(n)=if(n<3, n+1, A067180(n*3\/2-1)) \\ M. F. Hasler, Nov 04 2018
|
|
CROSSREFS
|
Equals A067180 with the 0 terms removed.
Sequence in context: A191000 A085402 A085400 * A035515 A317716 A076988
Adjacent sequences: A067520 A067521 A067522 * A067524 A067525 A067526
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Amarnath Murthy, Feb 14 2002
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, Feb 18 2002
Edited by Ray Chandler, Apr 24 2007
|
|
STATUS
|
approved
|
|
|
|